
The One RING : a Robotic Indoor Navigation Generalist

Supplementary Material

Appendices for The One RING : a Robotic

Indoor Navigation Generalist

The following items are provided in the Appendix:

• Details about the real-world evaluation robot platforms
and human evaluation setup (App. 6),

• Data collection for randomized embodiments using ex-
pert planners in simulation (App. 7),

• Full experimental setup (App. 8),
• Model architecture details (App. 9),
• A visualization of the random embodiments in our train-

ing set, along with the 5 nearest neighbors to each
of the real robots (Stretch-RE1, LoCoBot, Unitree A1)
(App. 10), and

• Limitations (conditioning on explicit embodiment param-
eters(App. 11).

In our supplementary materials, we also include a supple-
mentary website (see the index.html file) that contains

• Real-world qualitative videos of evaluating RING zero-
shot on four different robot platforms, including Stretch
RE-1 with our camera setup, Stretch RE-1 with factory
camera configuration, LoCoBot, and Unitree GO1,

• Qualitative videos for human evaluation, using RING as
navigation assistant,

• Videos showing our dataset of trajectories collected from
random embodiments in simulation.

Stretch RE-1

Unitree GO1

LoCoBot

Figure 8. Robot platforms. We use 3 different platforms, includ-
ing Stretch RE-1, LoCoBot, and Unitree GO1 for our real-world
evaluations.

6. Real Robot Platforms and Human Evalua-
tion Setup.

6.1. Stretch RE-1, LoCoBot, Unitree GO1
We use Stretch RE-1, LoCoBot, and Unitree GO1 as our
robot platforms for real-world evaluations, shown in Fig. 8.
For Stretch RE-1, we evaluate two different sensor configu-
rations: the factory configuration and the configuration sug-
gested by SPOC [17]. We summarize the main differences
in these platform in Tab. 7. For robot movements, we ei-
ther implement a Kalman filter or wrap around provided
robot APIs to realize low-level controllers for a discrete ac-
tion space {MoveBase(±20cm), RotateBase(±6�,
±30�), Done} across all platforms. It is important to note
that during the training stage, we do not use any embodi-
ment configurations from these robots to generate imitation
learning data or to initialize RL fine-tuning embodiments.

H1 H2 H3 H4 H5

Figure 9. Human Participants for Navigation Assitance. Our
five human participants have different height and different camera-
holding poses, resulting in different sensory observations (details
about human participants in Table 8).

6.2. Human Evaluations
Human participants. We asked five human participants to
use RING as a navigation assistant and evaluated its per-
formance across a range of different human embodiments.
These variations stem from differences in camera-holding
poses, participant heights, step sizes, and rotation angles.
A summary of these variations across different participants
can be found in Tab.8 and Fig.9. Due to these variations,
each participant contributes a unique set of evaluation em-
bodiments and sensor configurations.
Human evaluation details. We developed a simple iOS
app, as shown in Fig. 10, that enables human participants
to input the target object as text (e.g., Find a mug), cap-
ture an image using the iPhone’s back camera, and send

Stretch RE-1 Stretch RE-1 (Factory) LoCoBot Unitree GO1
Body dimension (cm) 33 ⇥ 34 ⇥ 141 33 ⇥ 34 ⇥ 141 35⇥35⇥89 64.5⇥28⇥40
Camera model 2⇥ D455 D435 D435 D435
Camera vertical FoV (degrees) 59� 69� 42� 42�

Camera height (cm) 140 130 87 28
Camera pitch (degrees) 27� 30� 0� 0�

Table 7. Details about evaluation robot platforms. Our four robot platforms have varying dimensions and camera configurations,
resulting in diverse evaluation embodiments.

H1 H2 H3 H4 H5
Height 60300 501000 50500 60100 501100

Step size 0.25m 0.35m 0.4m 0.3m 0.3m
Rotation Degrees 30� 45� 45� 35� 30�

Table 8. Details about human evaluators. Our five human par-
ticipants have varying heights, step size, and rotation degrees, re-
sulting in different evaluation embodiments.

Figure 10. iOS app for human evaluation. We developed a sim-
ple iOS app that enables human participants to text goal, capture an
image using iPhone’s back camera, send both to a remote server,
and receive the predicted action from our RING policy.

both the text prompt and the captured image to a remote
server. Upon receiving the prompt and image, the remote
server processes them using our RING policy to predict ac-
tion probabilities and samples an action. The predicted ac-
tion is then sent back to the iPhone and displayed within the
app. The prompted action space used is identical to that of
our real-world robot.

The human participant navigates by following the sug-
gested action at their own pace and rotation degree, as de-
tailed in Tab. 8. After completing each action, they tap the
Predict button again, prompting the app to capture a new

Human eval test scene

Starting
Location

Figure 11. Real-world test scene for human evaluation. Three
different target objects include (Apple, Houseplant,
Mug). The red arrow in the bottom left corner is the starting loca-
tion.

image and send it to the server along with the text prompt.
This process repeats until the Done action is returned or the
100th step is reached. An episode is considered successful
if, before reaching 100 steps, the target object is visible in
the latest image and within a 1 meter distance when RING
calls Done.

The layout of the test scene is shown in Fig. 11, il-
lustrating two locations for finding a Mug, three for a
Houseplant, and one for an Apple. The participant al-
ways begins at the bottom-left corner of the scene.

7. Data Generation with Expert Planners
Expert planners introduced by [17] are not efficient and ro-
bust for random embodiments. As a result, we made major
improvements to the planners to allow for better trajecto-
ries.

The major factor in this improvement is to consider
safety of the policy (defined as the avoidance of approach-
ing any obstacles along the way.) We use A* [20, 22] to
generate safe navigation trajectories for training as follows:
1) Extract reachable locations in a scene on a finely spaced
grid, ensuring that the agent’s collider does not intersect
with any object’s collider. Thus, different embodiments

yield different reachable locations according to their col-
lider. 2) Compute a clipped Euclidean distance to the near-
est obstacle. Then, for each location, set the cost of visiting
it as the inverse of the third power of the distance. 3) Con-
struct a grid-like graph where each reachable location is a
node connected to its immediate neighbors. For each con-
nection, assign a cost equal to the maximum cost of visiting
either of the two connected nodes. 4) Extract a minimum-
cost path connecting the reachable positions in the graph
nearest to the source and to the target via A*. 5) Extract
waypoints by skipping over points in the A* path as long as
skipping them doesn’t increase the total path cost from the
latest waypoint. 6) The expert linearly interpolates between
waypoints up to the precision reachable by the action space
to generate each trajectory.

8. Additional Benchmark/Experiment Details
Action Space. Following on prior work with
AI2-THOR, we discretize the action space for
all agents in our training: {MoveAhead,

MoveBack, RotateRight, RotateLeft,

RotateRightSmall, RotateLeftSmall,

Done}. Here, MoveAhead advances the robot by
0.2 meters, MoveBack moves the robot backward by
0.2 meters, RotateRight/RotateRightSmall

rotates it clockwise by 30� / 6� around the yaw axis,
and RotateLeft/RotateLeftSmall rotates it
counterclockwise by 30� / 6� around the yaw axis,
and Done indicates the agent has located the target,
ending the episode. We evaluate RING zero-shot on
all robots (Stretch-RE, LoCoBot, Unitree Go1) with
the same action space using their low-level controllers.
When finetuning for embodiment-specialized policies,
we finetune for a slightly different action space for Lo-
CoBot: {MoveAhead, MoveBack, RotateRight,

RotateLeft, LookUp, LookDown, Done}.
LookUp tilts the camera up by 30� around the roll axis and
LookDown tilts the camera down by 30� around the roll
axis. All baselines are trained and evaluated with the same
action space for fair comparison.
Success Criteria. We follow the definition of Object Goal
Navigation from [2], where an agent must explore its envi-
ronment to locate and navigate to a specified object within a
maximum of n steps. To indicate it has found the target, the
agent must execute the Done action. Success is determined
by the environment based on whether the agent is within a
distance d of the target and if the target is visible in its view.
If the agent exceeds n steps without executing the Done

action, the episode is considered a failure. For simulation
benchmarks, we follow CHORES-S [17] with n = 600 and
d = 2. For real-world evaluations, we use n = 300 and
d = 1.
Success weighted by collision (SC). Collision is one of

the main challenges for a unified policy operating across
diverse embodiments in visual navigation tasks. Previous
works measure the collision rate (#collisions

#steps) to understand
how often a policy collides with objects in a scene. How-
ever, this does not reflect the effectiveness of the policy at
the task level. For example, in a successful episode, a sin-
gle collision and multiple collisions should have different
impacts on the performance measurement. As a results, in-
spired from Success Weighted by Episode Length (SEL),
we propose Success Weighted by Collision (SC),

SC =
1

N

NX

i=1

Si
1

1 + ci
, (2)

where Si is a binary indicator of success for episode i, ci is
the number of collisions in episode i, and N is the number
of evaluation episodes. In this metric, the policy is penal-
ized most heavily for a single collision, with the penaliza-
tion decreasing for each additional collision, as the penalty
diminishes inversely with the number of collisions. Intu-
itively, > 0 collisions are much worse than 0, as a real robot
may suffer damage from one bad collision, but the differ-
ence between 10 and 11 collisions is a more marginal dif-
ference.
Hyparameters. We list the hyperparameters used in train-
ing and the architecture in Table 9.

Imitation Learning
Batch Size 224
Context Length 100
Learning Rate 0.0002

RL Finetuning
Total Rollouts 64
Learning Rate 0.0002
Mini Batch per Update 1
Update Repeats 4
Max Gradient Norm 0.5
Discount Value Factor � 0.99
GAE � 0.95
PPO Surrogate Objective Clipping 0.1
Value Loss Weight 0.5
Entropy Loss Weight 0.0
Steps for PPO Update 128

Model Architecture
Transformer State Encoder Layers 3
Transformer State Encoder Hidden Dims 512
Transformer State Encoder Heads 8
Causal Transformer Deocder Layers 3
Causal Transformer Deocder Hidden Dims 512
Causal Transformer Deocder Heads 8

Table 9. Hyperparameters for training and model architecture.

8.1. Real-World Benchmarks

All robots are evaluated in a multi-room apartment shown
in Fig. 4. Based on the embodiment, the benchmark has
different starting locations and objects. Among our target
object categories, Apple can be found in the Living room
and Kitchen, Bed can only be found in the Bedroom, Sofa
and Television can only be found in the Living room,
Vase can be found in the Livingroom, Corridor, Office, and
Kitchen, Chair can be found in the Office and Kitchen,
HousePlant can be found in the Living room, Office, and
Kitchen.
• LoCoBot: Following Phone2Proc [10], use the same five

target object categories, including Apple, Bed, Sofa,
Television, and Vase, and the three starting poses
shown in 4.

• Stretch RE-1: We follow SPOC [16] to use the same six
target object categories, including Apple, Bed, Chair,
HousePlant, Sofa, and Vase, and the three starting
poses, shown in Fig. 4. We consider 2 different cam-
era configurations for Stretch: 1) off-the-shelf camera
equipped on the Stretch RE-1 (D435 with a vertical field
of view of 69� and resolution of 720 ⇥ 1280), 2) fol-
lowing [17], we use 2 Intel RealSense 455 fixed cam-
eras, with a vertical field of view of 59� and resolution
of 1280⇥ 720. The cameras are mounted facing forward
but pointing downward, with the horizon at an angle of
27�.

• Unitree Go1: We create a new evaluation set for Uni-
tree Go1 with 3 starting poses (Fig. 4) and 4 ob-
jects (toilet, sofa, TV, trashcan) positioned
to accommodate the robot’s lower height, ensuring that
the objects can be visible from its lower viewpoint.

9. Model Architecture Details
We will now detail RING’s architecture (see Fig. 12),
which is inspired by previous works POLIFORMER [62] and
FLARE [24].
Visual encoder. We use the Vision Transformer from
the pretrained SIGLIP-VIT-B/16 as our visual encoder.
Since the RGB images vary in dimensions across differ-
ent embodiments, we include an additional preprocessing
step before feeding them into the encoder. Specifically,
we pad each RGB image to a square and then resize it
to 256 ⇥ 256. In addition, we mask the image from the
2nd camera with zeros for the embodiments with only one
camera. The visual backbone takes the RGB observation
i 2 R256⇥256⇥3 as input and produces a patch-wise repre-
sentation r 2 R 256

16 ⇥ 256
16 ⇥h, where h = 768 is the hidden

dimension of the visual representation. We reshape the vi-
sual representation into a `⇥h matrix, ` = 256·256/16·16,
and project the representation to produce v 2 R`⇥d, where
d = 512 is the input dimension to the transformer state

Nearest Neighbors

Stretch RE-1 N1 N2 N3 N4 N5
Camera Position (x) (meters 0 -0.06 0.11 0 -0.08 0.03
Camera Position (y) (meters 1.44 1.13 0.67 0.24 0.72 0.32
Camera Position (z) (meters 0.07 0.03 0.06 0.07 0.07 -0.03
Camera Pitch (degrees) 27 29 33 34 32 33
Camera Yaw (degrees) 0 0 0 0 0 0
Vertical FoV (degrees) 59 57 56 54 59 54
RGB Resolution (H) 224 224 224 224 224 224
RGB Resolution (Y) 396 394 394 396 396 398
Rotation Center (x) (meters) 0 0 0.09 -0.17 0 0.02
Rotation Center (z) (meters) 0.11 0.02 0.02 -0.08 0.04 -0.12
Collider Size (x) (meters) 0.34 0.23 0.28 0.49 0.33 0.24
Collider Size (y) (meters) 1.41 1.41 0.9 0.84 1.23 0.43
Collider Size (z) (meters) 0.33 0.27 0.41 0.29 0.44 0.38
distance - 0.38 0.7 0.79 0.8 0.92

Table 10. Five Nearest Neighbor Embodiments for Stretch RE-
1 in Training Data.

encoder. Note that since we have two RGB images from
two cameras, we produce two visual representations v1,2 at
the end of this module. The vision encoder remains frozen
through training.
Goal encoder. We follow the Text Transformer from the
pretrained SIGLIP-VIT-B/16 to encode the given natural
language instruction into goal embedding t 2 R64⇥h, where
h = 768 is the hidden dimension and this Text Transformer
returns 64 tokens after padding. Before passing the goal em-
bedding to the transformer state encoder, we always project
the embedding to the desired dimension d = 512, resulting
in g 2 R64⇥512.
Transformer State Encoder. This module summarizes the
state at each timestep as a vector s 2 Rd. The input to this
encoder includes two visual representations v1,2, the goal
feature g, and an embedding f of a STATE token. These
features are concatenated and fed to the non-causal trans-
former encoder. The output corresponding to the STATE
token is the state feature vector s 2 Rd which summarizes
the state at each timestep. This feature vector is a goal-
conditioned visual state representation.
Causal transformer decoder. We use a causal transformer
decoder to perform explicit memory modeling over time.
This can enable both long-horizon (e.g., exhaustive explo-
ration with backtracking) and short-horizon (e.g., navigat-
ing around an object) planning. Concretely, the causal
transformer decoder constructs its state belief bt using the
sequence of state features s = {sj |j=t

j=0} within the same
trajectories. To avoid recomputing the attention on the pre-
vious state features, we follow PoliFormer [62] to use KV-
Cache to store the past Key and Value into two cache ma-
trices in each attention layer. Therefore, we only perform
feedforward computation for the most current state feature
st.
Linear actor-critic head. With the latest state belief bt, we
simply use a linear actor-critic head to project it to predict
action logits over the action space. For RL-finetuning, the
linear actor-critic head also predicts a value estimate about
the current state.

Figure 12. RING architecture. The notations in gray correspond to hidden feature vectors and the black text on top of each module
indicates the hyperparameters for that module. RING accepts visual observations and a language instruction as inputs and predicts an
action to execute. During RL finetuning, RING also predicts a value estimate. We mask the image from the 2nd camera with all 0 for the
embodiments with only one camera, such as LoCoBot and Unitree. More specifically, we use the Vision Transformer and the Text Encoder
from SIGLIP-ViT-B/16 as our visual encoder and goal encoder. After encoding, we compress and project the visual representation r
and text embedding t to v and g, respectively, with the desired dimension d. Next, the Transformer State Encoder encodes v, g, along
with state token embedding f into a state feature vector s. The Causal Transformer Decoder further processes s, along with previous
experiences stored in the KV-Cache, to produce the state belief b. Finally, the Linear Actor-Critic Head predicts action logits (and, during
RL finetuning, a value estimate) from b.

Figure 13. t-SNE visualization of the embodiment parameters
ce 2 R19 for 50k random agents. The three specific robots are
also shown for visualization (they are not included in our training
set).

10. Nearest Neighbor Embodiments to Real
Robots in our Training Data

Fig. 13 presents a t-SNE visualization of the embodiment
parameters ce 2 R19 for 50k samples from the random em-
bodiments in our training set (examples showin in Fig. 14).
We also show the corresponding parameters for Stretch, Lo-
CoBot, and Unitree A1 for visualization purposes. Our ran-
dom embodiments range widely over the space of possible
embodiments, with many closely approximating each of the
three real robots. Tables 10, 11, and 12 list the five nearest

Nearest Neighbors

Locobot N1 N2 N3 N4 N5
Camera Position (x) (meters) 0 -0.09 0.12 0.03 �0.06 -0.1
Camera Position (y) (meters) 0.87 1.01 0.81 0.39 0.85 0.42
Camera Position (z) (meters) 0 -0.1 -0.05 -0.1 -0.02 0.09
Camera Pitch (degrees) 0 0 0 -1 0 1
Camera Yaw (degrees) 0 0 0 0 0 0
Vertical FoV (degrees) 42 45 44 42 45 45
RGB Resolution (H) 224 224 224 224 224 224
RGB Resolution (Y) 396 396 394 394 392 392
Rotation Center (x) (meters) 0 0.04 0.1 0.1 -0.02 -0.15
Rotation Center (z) (meters) 0 -0.13 0 0.13 0.02 -0.12
Collider Size (x) (meters) 0.35 0.27 0.36 0.37 0.27 0.42
Collider Size (y) (meters) 0.89 1.28 1.23 0.86 1.46 0.59
Collider Size (z) (meters)scale z 0.4 0.43 0.23 0.36 0.36 0.45
distance - 0.18 0.22 0.34 0.41 0.42

Table 11. Five Nearest Neighbor Embodiments for LoCoBot in
Training Data.

Nearest Neighbors

Unitree A1 N1 N2 N3 N4 N5
Camera Position (x) (meters) 0.01 0.08 0.03 -0.01 -0.04 0.1
Camera Position (y) (meters) 0.3 0.56 0.37 0.85 0.55 0.82
Camera Position (z) (meters) 0.27 -0.11 0.06 0 0.12 0.02
Camera Pitch (degrees) 0 -3 -2 -4 -5 -5
Camera Yaw (degrees) 0 0 0 0 0 0
Vertical FoV (degrees) 42 49 49 51 50 51
RGB Resolution (H) 270 224 224 224 224 224
RGB Resolution (Y) 480 448 446 448 446 446
Rotation Center (x) (meters) 0 -0.07 0.05 -0.07 -0.09 -0.14
Rotation Center (z) (meters) 0.04 -0.02 0 -0.12 0.12 0.11
Collider Size (x) (meters) 0.3 0.46 0.27 0.35 0.27 0.49
Collider Size (y) (meters) 0.34 1.24 0.45 1.47 0.67 1.39
Collider Size (z) (meters) 0.64 0.34 0.37 0.36 0.33 0.39
distance - 0.76 0.78 1.04 1.1 1.12

Table 12. Five Nearest Neighbor Embodiments for Unitree A1
in Training Data.

neighbors to each robot in the compressed t-SNE space and
their corresponding embodiment parameters. Although the
nearest neighbors do not exactly match each robot’s em-

Figure 14. Random embodiments in the AI2-THOR simulator. Right column shows the egocentric view from the main camera and the
left column shows a third-person view of the agent –white boxes indicate the robot colliders for visualization purposes only.

bodiment, they are sufficiently similar across different pa-
rameters. This extensive coverage of the embodiment space
and proximity to real-world embodiments ensure consistent
zero-shot generalization to all three robots.

It is worth noting that some parameters of the Uni-
tree A1 fall outside the distribution of the training data.
For example, we sample the collider size within the range
[0.2m, 0.5m] for both the x and z axes, whereas the Unitree
A1 has a length of 0.64m. This demonstrates that RING has
the potential for out-of-distribution generalization.

11. Limitations
Although RING has the advantage of being deployable on
a wide range of embodiments without any privileged infor-
mation about its current body, when available it may be ben-
eficial to have a policy explicitly conditioned on the current
embodiment specification. This might lead to improved per-
formance and more desirable behaviors, such as increased
efficiency and collision avoidance.

We train RING-EMB-COND by explicitly providing the
embodiment information to the policy. The embodiment pa-
rameters are represented as a configuration vector ce 2 R19,
with each dimension corresponding to a specific embodi-
ment parameter listed in Table 1. This information is passed
as an additional token to the Transformer State Encoder. We
use a simple MLP to project ce to the desired feature dimen-
sion e 2 R1⇥512 before passing it to the encoder.

Table 13 evaluates the 2 versions of the policy on our
custom benchmark consisting of 2,000 random embodi-
ments across 2,000 scenes, comparing metrics such as Suc-
cess Rate, Success Weighted by Collision (SC), Collision
Rate (CR), and Safe Episode (percentage of episodes with-
out any collisions).

The results do not show a clear benefit to conditioning
the policy on embodiment information. This could be due
to several reasons. It is possible that most relevant infor-
mation about environment hazards and agent motion can be
already inferred from visual observations. It is also possi-

Model Ablations Success " SEL " SC " CR # Safe Episode "
Body Config

RING 7 67.62 56.24 42.53 7.77 46.90
RING-EMB-COND 3 69.44 57.42 44.69 8.0 46.54

Table 13. Conditioning RING on embodiment parameters.
We explicitly provide the embodiment parameters to the policy
(RING-EMB-COND) and compare with RING without any infor-
mation about the embodiment. Both policies are evaluated on a
custom benchmark consisting of 2000 random embodiments in
2000 scenes.

ble that a significant fraction portion of collisions (both with
an without embodiment specification provided) occur with
objects that never enter the agent’s visual field, in which
case extra information about its own embodiment would not
help. Alternatively, a more effective method for condition-
ing the policy on the parameters may exist. Future work
should explore this with additional examination of agent-
environment collision and and designing improved policy
architectures to better integrate embodiment parameters, ul-
timately training a more efficient and robust policy that ex-
plicitly incorporates embodiment information.

