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Figure 1. (A) We train on one million randomly generated embodiments in simulation varying camera configurations, body size, and
rotation pivot point. The plot shows the t-SNE visualization of embodiment parameters ce 2 R19 for 30k random agents and three specific
robots (robots are for visualization-we do not train on any real robot embodiment parameters). Egocentric views from the first camera
are shown for 10 sample agents. (B) Our trained policy transfers zero-shot to a wide range of embodiments in the real-world including
Stretch RE-1, LoCoBot, and Unitree Go1, as well as a human embodiment. (C) The RING policy displays embodiment-adaptive behavior,
adjusting its navigation strategy based on its embodiment.

Abstract

Modern robots vary significantly in shape, size, and
sensor configurations used to perceive and interact with
their environments. However, most navigation policies are
embodiment-specific; a policy learned using one robot’s
configuration does not typically gracefully generalize to an-
other. Even small changes in the body size or camera view-
point may cause failures. With the recent surge in custom
hardware developments, it is necessary to learn a single
policy that can be transferred to other embodiments, elim-
inating the need to (re-)train for each specific robot. In

this paper, we introduce RING (Robotic Indoor Navigation
Generalist), an embodiment-agnostic policy, trained solely
in simulation with diverse randomly initialized embodi-
ments at scale. Specifically, we augment the AI2-THOR
simulator with the ability to instantiate robot embodiments
with controllable configurations, varying across body size,
rotation pivot point, and camera configurations. In the vi-
sual object-goal navigation task, RING achieves robust per-
formance on real unseen robot platforms (Stretch RE-1, Lo-
CoBot, Unitree’s Go1), achieving an average of 72.1% and
78.9% success rate across 5 embodiments in simulation and



4 robot platforms in the real world.

1. Introduction
Robot embodiments are diverse and are constantly evolv-
ing to better suit new environments and tasks. This range
in body configurations—differences in size, shape, wheeled
or legged locomotion, and sensor configurations—not only
shapes how robots perceive the world but also how they act
in it. A robot with a wide field of view (FoV) or multi-
ple cameras can scan its surroundings quickly, while one
with a narrower view might need to more actively explore
a room. A small robot can squeeze through tight spaces, a
low-profile one can duck under furniture, and a larger robot
may need to follow more conservative routes. The influence
of embodiment on behavior means a policy trained on one
design, or even several, often does not perform well out of
domain [62].

There has been progress towards scalable cross-
embodiment training [34, 45] and in developing general-
purpose navigation policies [13, 42, 43, 56]. While these
methods demonstrate some transfer to unseen embodi-
ments, they require construction of topological maps or
graphs and suffer performance degradation with relatively
small changes in embodiment (e.g., camera position modi-
fication on the same robot). Potentially, this is due to these
methods relying on the small amount of real-world data
available in public datasets-only around 20 embodiments in
total. This highlights the need for a more comprehensive
solution that reliably covers the wide range of possible em-
bodiments without retraining or additional adaptation.

We introduce RING, a Robotic Indoor Navigation
Generalist. RING is trained exclusively in simulation, with-
out any use of real-world robot embodiments. In other
words, all robot platforms we evaluate on (i.e., Stretch
RE-1, LoCoBot, Unitree’s A1) are unseen by RING dur-
ing training. We leverage simulation to randomly sample 1
Million agent body configurations, varying the robot’s cam-
era parameters, collider sizes, and center of rotation. Con-
cretely, each embodiment consists of a collider box of vary-
ing dimensions and cameras with randomized FoV and di-
mensions, placed randomly within the collider box. Fig. 1-
A shows a t-SNE [46] visualization of body parameters for
30k random agents in our generated data.

Our method is inspired by the recent success in real-
world experiments while training at large-scale only in
simulation [17, 24, 62]. Simulation training is able to
benefit from the vast scale of scenes (150k ProcTHOR
houses [12]) and objects (40k+ annotated 3D objects from
Objaverse [11]) in the AI2-THOR simulator. Extensive do-
main randomization on visual observations and the use of
pre-trained visual encoders then allows simulation-trained
policies to bridge the sim-to-real gap. We follow the train-

ing procedure outlined in FLaRe [24], first training our
policy on expert trajectories collected from 1M random-
ized embodiments and subsequently fine-tuning it with on-
policy reinforcement learning (RL) within the simulator.

Our results demonstrate generalization to truly unseen
embodiments. RING generalizes to diverse real-world em-
bodiments without any adaptation, despite being trained ex-
clusively in simulation without access to the real robot con-
figurations. We evaluate our policy in a zero-shot setting
across a variety of embodiments, including the Stretch RE-
1, LoCoBot, Unitree’s A1, and even “Navigation Assis-
tants”, wherein a human user captures ego-centric obser-
vations on their phone and prompt RING policy to predict
actions to navigate. RING achieves 72.1% and 78.9% suc-
cess rate on average, outperforming the best baseline signif-
icantly, both in simulation and the real-world.

We highlight three key characteristics of RING: 1) it
displays zero-shot generalization to unseen embodiments,
keeping a consistently high performance (Sec. 4.1); 2) it
can zero-shot transfer to the real-world without any adapta-
tion or real-world-specific finetuning. (Sec. 4.2); 3) it can
be adapted to an embodiment-specialized policy with even
better performance with minimal finetuning (Sec. 4.3); and
4) at inference, it dynamically adjusts its behavior based on
the embodiment (Sec. 4.4, Fig. 6). RING can be directly de-
ployed to navigate any robot platform, is easy to install, and
is ready for use by researchers in the community. We will
release our pretrained models, generated data, and training
code.

2. Related work
Cross-embodiment. Cross-embodiment training has re-
ceived substantial attention from the research community.
Arguably the most representative of a large body of recent
work [3, 7, 13, 14, 19, 21, 23, 25, 28, 30, 33, 47, 52, 53,
56, 60], Open-X-Embodiment (OXE) [9] is the fruit of a
large collaboration to cover many robotic tasks, with spe-
cial emphasis in manipulation. Its usage in RT-X results in
a notable performance gain in emergent skill evaluations in
comparison to RT-2 [5]. Despite the 1.5 million trajectories
across 22 embodiments present in their dataset, the enor-
mous cost of data collection in the real world makes further
scaling challenging. CrossFormer [13] trains a transformer-
based policy on 900k trajectories across 30 robots, includ-
ing a subset of OXE, navigation data from GNM [42], ma-
nipulation data from DROID [27], and additional collected
data. Due to the relatively sparse amount of embodiments
observed during training and the target low-level control, it
does not generalize to unseen embodiments. GET-zero [36]
focuses on dexterous manipulation, and proposes to inform
the policy with the structure of the embodiment via a con-
nectivity graph to bias the attention. In contrast, we gener-
ate an arbitrarily large amount of embodiments for training



Parameters Training Range
Collider Size (↵x,↵y ,↵z) [0.2, 0.5], [0.3, 1.5], [0.2, 0.5]
Rotation Center (ox, oy , oz) [�↵x/2,↵x/2], [�↵y/2,↵y/2], [�↵z/2,↵z/2]
Vertical FoV (cam1, cam2) [40, 100], [40, 100]
Horizontal FoV (cam1, cam2) [40, 120], [40, 120]
Camera Pitch (cam1) [�20, 40]
Camera Pitch (cam2) [�20, 60]
Camera Yaw (cam1, cam2) always 0, [0, 360]
Camera Position (x) (cam1, cam2) [�↵x/2,↵x/2], [�↵x/2,↵x/2]
Camera Position (y) (cam1, cam2) [0.3,↵y ], [0.3,↵y ]
Camera Position (z) (cam1, cam2) [�↵z/2,↵z/2], [�↵z/2,↵z/2]
RGB dimensions (H, W) [112, 448], [112, 448]

Table 1. Random Embodiment Parameters. We generate 1M
different embodiments sampled from the ranges above.

our policy, enabling zero-shot deployment to new embodi-
ments without accessing the embodiment structure.

Foundational navigation policies. Following the success
in recent developments for point-goal navigation [50], lo-
comotion [4, 39, 41], agile control [51], exploration [6, 55,
57], and social navigation [37], comparable results in more
nuanced tasks like semantic or object-goal navigation (Ob-
jectNav) [2, 15, 26, 31, 40, 48, 58, 61] remain elusive due
to a lack of efficient exploration and semantic understand-
ing capabilities. Recently, with powerful pretrained founda-
tional vision models [35, 63] and large-scale procedurally
generated virtual environments [11], notable progress in
end-to-end ObjectNav policy learning for specific embodi-
ments has been achieved by means of imitation learning (IL)
from shortest-path trajectories [17], RL [62], or combina-
tions thereof [24]. In image-goal navigation, NoMaD [44],
which extends ViNT [43], uses a diffusion policy to control
a single embodiment. With the same goal in mind, GNM
[42] trains navigation policies across 6 embodiments us-
ing IL. In contrast, our policy benefits from finetuning with
RL, improving resilience to compounding errors. Addition-
ally, thanks to training with large-scale randomized embod-
iments in simulation, RING learns a single policy to nav-
igate any embodiment, generalizing to truly unseen robot
platforms in the real world. Furthermore, NoMaD, ViNT,
GNM, and Mobility VLA [54] all require topological map
or graph reconstruction for high-level planning, whereas our
policy is fully end-to-end and explores novel scenes with-
out an explicit map. While several efforts [1, 32, 59] fo-
cus on learning embodiment-agnostic policies using LLMs
or VLMs, they address only short-horizon navigation tasks
and perform single-step predictions. In contrast, RING
models temporal information through a transformer de-
coder.

3. RING

With the growing diversity of robots used in research labs
and real-world applications, there remains a need for a pol-
icy that can operate a wide range of embodiments and trans-

fer, in a zero- or few-shot manner, to unseen robots. We
introduce RING, a generalist policy for indoor visual navi-
gation that learns from a broad spectrum of embodiments,
trained exclusively in simulation, without any direct use of
actual robot embodiments. We show that training on an ex-
tensive range of ⇠1M random embodiments results in a ro-
bust navigation policy, enabling zero-shot transfer to unseen
real-world robot embodiments. To train RING, we define
the space of random embodiments (Sec. 3.2), enable gener-
ation of expert trajectories for random embodiments in sim-
ulation (see Appendix), and use state-of-the-art architecture
designs (Sec. 3.3) to train with a combination of IL and RL
methods (Sec. 3.4).

3.1. Problem formulation
Learning a navigation policy across multiple embodiments
is a multi-task robotic problem. We define the space of pos-
sible embodiments as E , where each embodiment e 2 E

is characterized by a configuration vector ce, which in-
cludes parameters such as camera settings, agent collider
size, center of rotation, etc. Each task can be modeled as a
Partially Observable Markov Decision Process (POMDP),
denoted as (S,A, E ,Oe, Te, R,L, P (s0), �), where S and
A are the state and action spaces. The observation space
Oe varies across embodiments due to differences in cam-
era parameters and sensor configurations. The observation
at time t for embodiment e, oet = Oe(st, ce), is a function
of both the state st and embodiment parameters ce. Given
an action at, the next state follows the transition dynam-
ics st+1 ⇠ Te(st+1|st, at, ce), which depends on the em-
bodiment, as different embodiments interact with the envi-
ronment in distinct ways (due to variations in collider size
and center of rotation). Fig. 2 shows example trajectories
from two different embodiments starting at the same lo-
cation and following the same sequence of actions. They
have distinct visual observations and follow different transi-
tion dynamics—one agent moves under the table, while the
other collides with it. Except where otherwise specified, we
assume that all embodiments share the same discrete ac-
tion space {MoveBase(±20cm), RotateBase(±6�,
±30�), Done}, and use robot-specific low-level controllers
to execute these actions during deployment.

3.2. Embodiment randomization at scale
Domain randomization [8] is a class of methods in which
policies are trained across a wide range of simulated en-
vironmental parameters; the aim is to enable robustness to
unseen environments. Our approach is complementary yet
orthogonal; we apply embodiment randomization to train
policies on a diverse set of robot body parameters, enabling
robust deployment to unseen real-world robots.

We model the body of the agent as an invisible collider
box in the AI2-THOR [29] simulator. Each agent can have
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Figure 2. Different embodiments exhibit different behaviors.
For each embodiment in these sample trajectories, the left column
shows the first-person view from the main camera and the second
one a third-person view of the agent –white boxes indicate the
robot colliders. Embodiment A (shown on the left) has a bigger
body size compared to Embodiment B (shown on the right). As a
result, B can go under the table to get to the chair but A collides
with the table and has to go around.

1 or 2 RGB cameras placed at a random pose within the col-
lider box. Parameters corresponding to both the body and
the cameras are sampled randomly from the ranges speci-
fied in Table 1. We also modify the process of generating
expert trajectories to account for the diversity of embodi-
ments, for details see Appendix. Below, we detail the pa-
rameters varied in our embodiment randomization.
Collider size (↵x,↵y,↵z). The agent’s body is modeled as
a collider box. We use three scale factors (↵x,↵y,↵z) to
scale the box along x, y, z axis. We sample ↵x and ↵y uni-
formly from the range [0.2, 0.5]m and sample ↵z (the height
of the agent) from the range [0.3, 1.5]m. These ranges ade-
quately capture the variability among most robots.
Rotation center (ox, oy, oz). These coordinates define the
agent’s pivot point. While this center is typically near (0,0),
it can vary across different robots. We sample ox from the
range [�↵x

3 , ↵x
3 ] and oy from the range [�↵y

3 , ↵y

3 ], with the
sampling ranges determined by the collider size.
Camera parameters. Each agent is equipped with two
RGB cameras placed within the collider box. We random-
ize several camera parameters, including position, rotation,
FoV, and aspect ratio. The sampling ranges for these param-
eters are shown in Table 1. While the first camera always
faces forward, the second camera can rotate up to 360� in z-
axis, enabling it to face forward, to the sides, or backward.

For visualization purposes, we define an embodiment
configuration vector ce 2 R19 for each embodiment, rep-
resenting the camera and body parameters. Fig. 1-A shows
a t-SNE visualization of the vectors ce for 30k of our ran-
dom embodiments, along with the corresponding vectors
for Stretch RE-1, LoCoBot, and Unitree A1. The figure

also includes the egocentric view from the first camera for
10 random embodiments, and the three robots. This demon-
strates that our randomization spans a wide range of possi-
ble embodiments, covering the real-world robot platforms
of interest. In total, we gather 1M trajectories across 50k
houses, each with a randomly sampled embodiment.

3.3. Architecture
With this rich dataset of expert trajectories for random em-
bodiments, a deep, high-capacity architecture is essential
to learn a robust policy. In this section, we introduce our
model architecture, shown in Fig. 3. At each timestep,
RING uses N RGB images (one per camera) and a lan-
guage instruction l to predict an action distribution over a
discrete action space. To account for different dimensions,
we pad the RGB observations to make them square and re-
size them to 256 ⇥ 256 before feeding them to the model.
RING’s architecture, inspired by PoliFormer [62], consists
of a Visual Encoder, a Goal Encoder, a Transformer State
Encoder, and a Causal Transformer Decoder with a linear
actor-critic head. The Visual and Goal Encoders are frozen
pre-trained models (a ViT and a language model, respec-
tively) that encode the RGB observations and instruction l
into visual and goal token embeddings. Projections of these
embeddings, along with a special STATE token vector, are
stacked along the token axis and processed by the multi-
layer Transformer State Encoder, which summarizes the ob-
servations at each timestep as the state embedding corre-
sponding to the STATE token. Finally, the Causal Trans-
former Decoder performs explicit memory modeling over
time, producing the current belief by causal attention on the
state embeddings stacked along the temporal axis. The lin-
ear actor-critic head further predicts action logits over the
action space as well as a value estimate. We provide more
details about the architecture in the Appendix.
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Figure 3. Our RING model architecture. It accepts visual obser-
vations and a language instruction as inputs and predicts an action
to execute. At RL finetuning, RING also predicts a value estimate.

3.4. Training Paradigm
Recently, SPOC [17] showed that training policies with Be-
havior Cloning on large-scale expert trajectories in simula-
tion leads to policies that effectively generalize to the real
world. FLaRe [24] further introduced a robust and scalable



method for finetuning such pretrained policies with On-
policy Reinforcement Learning. RL finetuning introduces
error recovery behaviors and mitigates the compounding er-
rors typically encountered in imitation learning, leading to
a substantial performance boost. We adopt the same recipe
of first pretraining our policy on expert trajectories collected
from randomized embodiments (Sec. 3.2), followed by fine-
tuning with on-policy RL using the randomized embodi-
ments in the AI2-THOR simulator [29].
Large-scale imitation learning with random embodi-
ments. We train our policy using the architecture outlined
in Sec. 3.3 on the collected trajectories. At each time step,
the linear actor-critic head in Causal Transformer Decoder
predicts the action logits. The cross-entropy loss is com-
puted between the logits ⇡t and the expert action. At train-
ing, we use a batch size of 240 trajectories and each trajec-
tory has a temporal context window of 100 steps. We train
our model on 8⇥ H100 GPUs (80 GB memory per GPU)
using the AdamW optimizer with a learning rate of 2·10�4

for 80k iterations.
RL finetuning with random embodiments. Following the
training recipe in FLaRe [24], we further perform a large-
scale RL finetuning using AllenAct [49] on the random-
ized embodiments in simulation. Our training includes 1M
random embodiments, 50k procedurally generated PROC-
THOR houses [12] with ⇠40k annotated 3D objects [18].
RL finetuning is specifically important for the policy to
learn to navigate a diverse set of embodiments through trial-
and-error. In particular, as the RING policy lacks explicit
information about its embodiment, it must implicitly in-
fer it, which requires extensive exploration and trial-and-
error. We use DD-PPO with 64 parallel environments and
128 rollout steps across 4 machines (each with 8⇥ H100
GPUs) using the AdamW optimizer with a learning rate of
2·10�5 for 40M training steps. Following FLaRe, we turn
off the entropy term in the PPO loss to avoid catastrophic
forgetting. For fair comparison, we use the reward function
of [12],

rt = max(0,min�0:t�1 ��t) + st � ⇢, (1)

where min�0:t�1 denotes the minimum L2 distance be-
tween the agent and any target object up to time t � 1, �t

is the most recent L2 distance, st is a success reward, and
⇢ denotes the step penalty of 0.01 to encourage the policy
to finish the task efficiently. The agent must issue Done to
indicate that it has found the target object to get the success
reward st = 10, otherwise st = 0.

4. Experiments
Our experiments show that RING operates effectively across
a wide range of embodiments, including actual robots
(Stretch RE-1, LoCoBot, and Unitree Go1) and human eval-

uation with Navigation Assistants, despite being trained ex-
clusively in simulation without any direct exposure to real
robot embodiments. Our key results are:
1. RING generalizes zero-shot to 4 truly unseen embodi-

ments, despite never being trained on them, and achieves
state-of-the-art performance across multiple benchmarks
(Sec. 4.1).

2. Our policy, trained solely in simulation on randomized
embodiments, transfers directly to the real-world, on 3
real robots and navigation assistants (human evaluation).
(Sec. 4.2).

3. RING can be easily adapted to embodiment-specialized
policies with minimal finetuning. It achieves better per-
formance on each specific robot (Sec. 4.3).

4. RING shows embodiment-adaptive behavior, adjust-
ing its strategies based on the agent’s body (Sec. 4.4).

5. We present ablation studies and explore finetuning with
collision penalties to enable the policy to take more con-
servative actions (Sec. 4.5).

4.1. RING generalizes zero-shot to unseen embodi-
ments

In this section, we perform zero-shot evaluations of all poli-
cies on four robot embodiments: Stretch RE-1 (with 1 or 2
cameras), LoCoBot, and Unitree A1 in simulation.
Baselines. For our baselines, we selected prior works
in both imitation learning (IL) and reinforcement learn-
ing (RL). Each baseline is trained on a specific embodi-
ment and evaluated in a zero-shot setting on four differ-
ent embodiments. SPOC [16] is a supervised IL baseline
trained on shortest-path expert trajectories in AI2-THOR.
PoliFormer [62] is a state-of-the-art transformer-based pol-
icy in object goal navigation, trained from scratch using
RL. FLaRe [24] is a approach for efficient policy finetun-
ing that combines IL and RL. Specifically, SPOC [17] is
trained with IL on Stretch RE-1 using 100k expert trajecto-
ries; SPOC-2.3M is trained on more expert trajectories; Po-
liformer [62] is trained from scratch on each embodiment
individually over 300M RL steps; and FLaRe [24] finetunes
SPOC on Stretch RE-1 with an additional 20M RL steps.
Experimental Details. RING is first trained with IL on 1M
expert trajectories collected from randomized embodiments
in simulation, followed by finetuning with RL for an addi-
tional 40M steps on the randomized embodiments (exam-
ples shown in Fig. 1-A and Fig. 2). Note that all four tar-
get embodiments were unseen during training, and informa-
tion on embodiment is not provided during evaluation. We
evaluate on the navigation benchmark in CHORES-S [17], a
simulation benchmark for household robot with 200 tasks
across 200 scenes. For Unitree A1, we create a new, simi-
lar benchmark with 200 tasks adjusted for the robot’s lower
height to ensure that all targets are feasible.
Results. Table 2 presents the zero-shot evaluation of all



Model Loss Train Embodiment Benchmark Embodiment

Stretch Stretch (Nav Cam) Stretch (Factory Config) LoCoBot Unitree A1 Average

SPOC [17] IL only Stretch 57.0 (38.1)* 37.9 (19.0) 33.0 (19.3) 16.2 (5.4) 2.1 (1.6) 29.2 (16.7)
SPOC-2.3M 60.0 (30.3)* 37.5 (17.9) 46.0 (19.4) 24.0 (7.9) 10.0 (5.2) 35.5 (16.1)

POLIFORMER [62] RL only
Stretch 81.0 (58.1)* 65.0 (35.5) 47.5 (25.6) 27.5 (14.8) 42.6 (25.1) 52.7 (31.8)

LoCoBot 56.0 (32.9) 56.5 (34.7) 52.0 (27.7) 61.5 (44.7)* 50.5 (34.2) 55.4 (34.9)
Unitree A1 40.0 (25.2) 39.0 (22.5) 35.5 (20.9) 30.0 (17.4) 55.3 (48.2)* 40.0 (26.8)

FLARE [24] IL + RL Stretch 82.0 (63.5)* 55.5 (37.9) 38.0 (19.6) 21.5 (10.9) 27.0 (15.1) 44.8 (29.4)

RING-ZERO-SHOT IL + RL RING-Random 76.0 (55.9) 74.0 (52.5) 72.0 (52.7) 66.5 (45.3) 72.0 (58.6) 72.1 (53.0)

Table 2. Zero-shot Results. RING shows 0-shot generalization on 4 unseen embodiments. Stretch RE-1 and LoCoBot are evaluated on the
CHORES-S [17] ObjectNav benchmark (Unitree A1 is evaluated on a different benchmark which accounts for the agent’s lower height).
“Stretch” without further qualification refers to the 2-camera variation on an RE-1 platform, as in [17]. All previous methods drastically
fail to generalize to embodiments other than their training. Gray* numbers are evaluated on the training embodiment, otherwise evaluated
zero-shot on an unseen embodiment.

policies across four embodiments. We compare Success
Rate and Success Weighted by Episode Length (SEL [15]),
a metric measuring efficiency. The results indicate that
all single-embodiment baselines struggle to generalize ef-
fectively to new embodiments, with performance declining
as embodiment differences increase. For example, SPOC
trained on the Stretch RE-1 with two cameras shows a grad-
ual decrease in performance as the evaluation embodiment
diverges from left to right on the top row in Table 2. It
is worst when evaluated on the Unitree A1, which has a
substantial height difference. In contrast, RING exhibits
strong generalization across all embodiments, despite not
being trained on any of them, achieving an average absolute
improvement of 16.7% in Success Rate. In some cases, it
outperforms the baseline trained on the target embodiment:
PoliFormer trained on LoCoBot (61.5 ! 68.5) and Unitree
A1 (55.3 ! 72.0). This shows that RING benefits from
training across random embodiments at scale, leading to a
more effective navigation policy which even outperforms
some embodiment-specialized policies.

4.2. RING transfers to real-world embodiments de-
spite being purely trained in simulation

Robot Evaluation We zero-shot evaluate our policy on 3
unseen robots in a real-world apartment. All evaluations
are performed directly in a large-scale apartment (Fig. 4),
without any further adaptation or real-world-specific fine-
tuning. We used the same evaluation set of 15 tasks for
LoCoBot [10, 12, 62] (3 different starting poses with 5 dif-
ferent targets), and 18 tasks for Stretch RE-1 [17, 24, 62] (3
different starting poses with 6 different goal specifications),
respectively. We create a new evaluation set for Unitree Go1
with 3 starting poses and 4 objects (toilet, sofa, TV, trash-
can) positioned to accommodate the robot’s lower height,
ensuring that the objects can be visible from its lower view-
point.
Human Evaluation To further demonstrate our policy’s
generalization capability to unseen embodiments, we eval-

StorageKitchenBathroomOfficeBedroom

Corridor

Livingroom

Stretch RE-1

LoCoBot

Unitree

Starting 
Locations

Figure 4. Real Evaluation Environment. Our real-world evalu-
ations are performed in a multi-room apartment with a long corri-
dor, shown here with the three starting locations for three different
robots’ evaluations.

Model Train Embodiment Eval Embodiment

Stretch Stretch (FC) LoCoBot Unitree Go1
ProcTHOR [12] LoCoBot - - 26.7 -

Phone2Proc [10] LoCoBot - - 66.7 -

SPOC [16] Stretch 50.0 - - -

POLIFORMER [62]
Stretch 83.3 33.3 - -

LoCoBot - - 80.0 -
Unitree Go1 - - - 41.7

FLARE [24] Stretch 94.4 - - -

RING-ZERO-SHOT RING-Random 83.3 72.2 80.0 80.0

Table 3. Real-world Results. RING transfers zero-shot to the
real-world without any finetuning. Gray numbers are evaluated on
same embodiment as their training. RING achieves 78.9% success
rate on average across 4 real-world robots.

uate it as a navigation assistant with humans as new, un-
seen embodiments. We asked 5 participants to navigate
in a real-world kitchen area, following the policy’s output
actions on their phones. Each individual has unique char-
acteristics, including step size, height, rotation angles, and
camera-holding posture. Each person navigates to three dif-
ferent objects (Mug, Apple, Houseplant), resulting in a
total of 15 trajectories. We compare RING with FLaRe [24],



Model Train Embodiment Object Human Participants

H1 H2 H3 H4 H5 Average

FLARE [24] Stretch RE-1
3 7 7 7 7

40.0%7 3 3 3 3
7 7 7 7 3

RING-ZERO-SHOT RING-Random
3 7 7 7 3

73.3%3 3 3 3 3
7 3 3 3 3

Table 4. Human Evaluation. Five individuals navigate to 3 differ-
ent objects ( Apple, Houseplant, Mug) following the
policy’s output actions on their phones in a kitchen area (example
trajectories in Fig. 5). RING-ZERO-SHOT shows much better gen-
eralization to human embodiment than the FLaRE baseline trained
on Stretch RE-1.
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Human Trajectory 1
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Figure 5. Human Trajectories. Two sample trajectories from two
individuals navigating to a houseplant and an apple using RING.

which was trained exclusively on the Stretch RE-1. Tab. 4
shows that RING consistently outperforms FLaRe across
target objects and different participants. Fig. 5 shows two
qualitative results achieved by RING.

4.3. RING can efficiently adapt to an embodiment-
specialized policy with minimal finetuning

Although RING is a universal policy that works zero-
shot across a broad range of embodiments, there are often
cases where an embodiment-specialized policy is needed to
achieve the best performance. In this section, we demon-
strate that RING can be easily adapted to a robot-specialized
policy with minimal fine-tuning, resulting in better perfor-
mance on the target embodiment.
Baselines. We use FLaRe [24] as a baseline. It has shown
successful adaptation to new tasks and embodiments. This
baseline is pretrained on Stretch RE-1 and finetuned on each
of the three embodiments using up to 20M RL steps.
Implementation Details. We finetune RING, pretrained on
randomized embodiments, on each individual robot for up
to 20M RL steps, while keeping all hyperparameters con-
sistent with FLaRe to ensure a fair comparison. Following
FLaRe, we repurpose two actions RotateBase(±6�) to
TiltCamera(±30�) to allow camera movements for Lo-
CoBot. Note that this movement is not allowed during the

zero-shot evaluation.
Results. Fig. 7 shows that RING adapts efficiently to
specific embodiments with minimal finetuning, leading to
embodiment-specialized policies with even better perfor-
mance. For LoCoBot and Unitree-A1, FLaRe’s perfor-
mance remains lower than on Stretch RE-1, indicating that
pretraining on one embodiment and finetuning across em-
bodiments cannot achieve the best results. This highlights
the need for a policy that can consistently adapt to any em-
bodiment with lightweight finetuning.

4.4. RING has embodiment-adaptive behavior.
The behavior of optimal navigation policy, ⇡⇤

✓(at | oet , ),
should be strongly shaped by the agent’s body. For instance,
an agent with a narrow FOV must explore more to effec-
tively perceive its surroundings compared to an agent with
a wider FOV. A smaller agent can navigate through narrow
hallways or under furniture, and a larger agent may need to
take more conservative paths. A question arises: does the
policy show the same navigation behaviors across different
embodiments, or does it adjust its strategy accordingly?

Our qualitative results confirm that the policy has an
embodiment-adaptive behavior. In Fig. 6-A,B, both
Stretch RE-1 and Unitree A1 start from the same pose be-
hind the bed. The quadruped robot directly moves under
the bed because of its lower height, while the Stretch RE-1
bypasses it. We observe that RING implicitly infers em-
bodiment parameters from visual observations and transi-
tion dynamics, dynamically adjusting its navigation strat-
egy accordingly. It does not have access to any privileged
information about its current body.

Visual observation reveals parameters, such as camera
specs and, in some cases, agent height. However, visual
information alone can be insufficient, leading the agent to
rely on collisions to infer body dimensions. In Fig. 6-C, the
agent matches the Stretch RE-1’s height but has a camera
positioned as low as the quadruped’s. Initially, it assumes
a lower height and attempts to go under the bed, but af-
ter colliding, it adjusts to maneuver around the bed, similar
to the Stretch RE-1. This embodiment-adaptive navigation
strategy adjustment is an interesting emergent behavior that
would not have been possible without training across the
exhaustive space of embodiments at scale.

4.5. Ablation Studies
A More Powerful Pretrained Visual Encoder. The de-
fault vision encoder used in our policies is the pretrained
SIGLIP-VIT-B/16. In this section, we examine the im-
pact of using a more powerful visual encoder on RING’s
performance. We train RING-LARGE using OpenAI’s VIT-
L/14 336PX CLIP model [38]. Table 5 compares the re-
sults, showing that a stronger visual encoder significantly
improves zero-shot performance across all four embodi-
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Figure 6. RING has embodiment-adaptive behavior, adjusting its navigation strategy based on the embodiment. The quadruped robot (B),
due to its lower height, walks under the bed, while the taller Stretch-RE1 robot (A) navigates around it. In (C), an agent with the same
height as Stretch-RE1 but a lower camera position initially attempts to move under the bed, assuming a shorter height. After colliding, it
adapts its strategy and navigates around the bed, similar to Stretch-RE1.
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Figure 7. Embodiment-Specialized Adaptation. RING, pre-
trained on randomized embodiments, shows efficient adaptation
to robot-specialized policies with minimal fine-tuning. Baseline
performance on LoCoBot and Unitree-A1 remains lower as they
are fine-tuned on a different embodiment than the one used in
pretraining. In contrast, RING policy achieves consistent perfor-
mance across all 3 embodiments, highlighting its capability for
robot-specialized adaptation.

ments (approximately 9% improvement on average). A
larger visual encoder is particularly beneficial in our policy,
as the visual observations are highly varied due to random-
ized camera parameters. To ensure fair comparison with the
baselines and because VIT-L/14 is more computationally
demanding, we chose to use the VIT-B/16 encoder for our
main experiments. We will release the training code for the
community for those interested in training with the larger
visual encoder.
Include collision penalty to take safer routes. As our
agents have randomized body dimensions and are not ex-
plicitly informed about their embodiment, they may oc-
casionally collide before understanding their correct body
size. In this section, we demonstrate that adding a small
collision penalty of 0.1 to the reward function can reduce
collisions rate by 50% (lowering the collision rate CR from
7% to 4%). The resulting policy is more conservative, re-
gardless of embodiment size.

To quantify these results, we created a custom bench-

Model Visual Encoder
Benchmark Embodiment

Stretch Stretch (Nav) LoCoBot Unitree A1

RING SIGLIP-VIT-B/16 76.0 74.0 66.5 72.0
RING-LARGE VIT-L/14 336PX CLIP 83.8 77.7 75.3 79.9

Table 5. A Stronger Visual Encoder. Using a more powerful
vision encoder significantly improves the zero-shot performance
across all embodiments.

Model Collision Penalty Metrics

Success " SEL " SC " CR # Safe Episode "

RING
7 67.62 56.24 42.53 7.77 46.90
3 66.33 56.87 49.05 4.03 60.57

Table 6. Collision Penalty. Adding a small collision penalty (0.1)
to the reward function results in 50% less collision, forcing the
policy to take more conservative paths.

mark similar to CHORES-S [17], consisting of 2,000 ran-
dom embodiments across 2,000 scenes. We evaluate 2 dif-
ferent versions of our policy on this benchmark, comparing
metrics such as Success Rate, Success Weighted by Colli-
sion (SC), Collision Rate (CR), and Safe Episode (percent-
age of episodes without any collisions). As shown in Ta-
ble 6, adding the collision penalty reduces the collision rate
(CR) (7.77%! 4.03%) as well as increases the percentage
of trajectories without collisions (46.90% ! 60.57%).

5. Conclusion
In this paper, we introduce RING (Robotic Indoor
Navigation Generalist), an embodiment-agnostic policy,
trained solely in simulation with diverse randomly ini-
tialized embodiments at scale (1M embodiments). RING
displays zero-shot generalization capability to various
unseen embodiments, maintaining consistent performance
across all. Our experimental results demonstrate that RING
achieves state-of-the-art results on novel embodiments, in-
cluding in some cases improving over embodiment-specific



policies. It can be directly deployed to the real-world
despite being solely trained in simulation. Finally, RING
is able to dynamically adjust its behavior based on
its embodiment and interactions with the environment.
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